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Abstract. Extra terms which describe the phonon absorption and emission associated with 
Brillouin scattering are added to the usual Dicke Hamiltonian. The general effect on the 
Dicke phase transition is an enhancement of the photon numbers. When an effective phonon 
coupling constant B exceeds a certain value, the transition is of the first-order type. The 
condition €/A* < 1 found by Wang and Hioe to be necessary for a phase transition to occur, 
is no longer necessary if the constant B is large enough and in such cases the transition is 
again first order in type. 

1. Introduction 

There has been considerable interest in the discovery (Hepp and Lieb 1973) that the 
Dicke model of non-linear optics exhibits a phase transition. 

Wang and Hioe (1973) have shown that if the partition function of the model is 
calculated using coherent photon states as the basis, expressions closely resembling 
the functional integral formulation of the thermodynamics of a superconductor are 
obtained (Langer 1964). It has been found that when the rotating wave approximation 
is relaxed, the qualitative features of the second-order transition are unchanged (Hioe 
1973, Carmichael er al 1973). As it is comparatively easy to excite long wave phonons 
in matter, it is important that thermodynamic calculations based on the Dicke model 
should attempt to take these into account. 

Hioe has proposed a modified Dicke model which seeks to include the effect of 
atomic motions when these may be described in terms of a vibrating harmonic lattice. 
A serious criticism of this Hamiltonian is that the phase factors of the interaction term 
are incorrectly chosen, resulting in eg a quantum transition probability for photon 
absorption (wavevector k) which depends on the position of the atom x as sin’k . x, 
a manifestly false conclusion. It is still an open question whether or not the phase 
transition is affected by coupling to local density fluctuations. 

It is known that Brillouin scattering may be explained in terms of first-order dilation 
effects and the interaction energy may be found for some cases (see eg Thompson 1970). 
With this in mind, we may expect that if the photon number becomes large as in the Dicke 
model transition, then because of the stimulated Brillouin effect, the phonon number 
should be large too. This suggests that a phase transition, if it occurs, could be of the 
first-order type in some circumstances. The thermodynamics of the model discussed 
below shows this property. Upon replacing the exponential phase factors by unity in 
the usual dipole interaction and in the Brillouin energy, and retaining the rotating 
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wave approximation, the model Hamiltonian becomes 

The notation of Wang and Hioe has been followed, but here annihilation and creation 
operators c,., cf’ referring to phonons of wavevectorf and frequency Q, are introduced 
with coefficients K ~ ,  K/* derived from the Brillouin energy term (Thompson 1970) 

i J  

In (2), pI(x)  is an average density for the atom f, uI is its displacement operator, pf the 
dipole operator and E(x) is the transverse electric field. 

The analysis of u1 into phonon operators is given by 

in which uf are polarization vectors and M is the mass of an atom. For simplicity we 
consider the case of a single photon mode of frequency o and a phonon mode of frequency 
Q = vo. The extension to a finite number of modes in each field is easily made (see 
later). 

2. Partition function and free energy 

In order to calculate the partition function 2 (=Tr  e-5H) we use the coherent photon 
states, la) where a is a complex number together with a set of coherent states I y )  for the 
phonons of wavevectorf: The details of the calculation and an explanation of the large 
N approximation which applies equally to the phonon variables, are given by Wang 
and Hioe. The result is: 

2 = n - 2  J/d2~d2yexp[-gw((aI2+vlgl2)](tr e-Boh)N 

where 

(4) 

E = WOJO. 

The symbol tr in (4) stands for the trace over the states of the two-level atom. From the 
eigenvalues of h, this trace is readily found to be 

where 

K = K ]  + k 2 ,  y = x1 +iy, .  
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A rotation in the (x , , y , )  plane shows that the result depends only on 1x1. Upon 
setting 

1aI2 = Ny (6)  

and similarly scaling the remaining ‘phonon’ variable we obtain : 

Z = N3’2(71#?~~)-r’2 (7) 

where 

F = y + ~ x ~ - ( ( B o ) - ~  

v = n/o. 
According to Laplace’s method the integral (7) can be found in terms of the minimum 
value of F in the region of integration. This will be either a local minimum (associated 
with a non-zero value of x) or else it will lie in the boundary of the region, (ie y = 0). 
It is easy to see that on the boundary, the lowest F occurs when x = 0. The new feature 
of this analysis arises from the possibility that F may have (i) two or more stationary 
points; (ii) a local minimum value which may be greater than, equal to or less than the 
boundary minimum F(0,O) at that temperature. 

To make the subsequent numerical work easier three parameters A, B, C are intro- 
duced with new variables q, w as follows : 

w = 1 +2)lclx, q = + ( 1  +412y~2c-2)”2  ( 9 4  

A = B = c 2 ( ~ J 2 A - 2 ~ - ’ ,  c = +BOO (9b) 

0, Y) = f (w, rl) (9c) 
where 

A(q2 - 1)  A(w - 1)2 1 
--In 2 cosh Cq.  

2B C 
2€-’f = + 2w2 ( 9 4  

The conditions that f be stationary may be written in the form : 

A ~ w - ~  = tanhCq (104 
B(q2 - 1)  = w4 - w3 (lob) 

and the boundary of the f surface is q = 1. 

examining the sign of 
From the elementary theory of surfaces, saddle points o f f  may be detected by 

A = f T r / s , ” W  -f ,’w (11) 
because the Jacobian of the transformation is in general non-singular and therefore 
does not cause difficulties. 

According to (lob), if q > 1 then w # 1 indicating that phonons and photons appear 
together with large occupation numbers. Furthermore, if w # 1, (loa) shows that the 
condition A -= 1 is no longer necessary for an acceptable solution (q  2 1) corresponding 
to the super-radiant phase transition. It is replaced by the weaker condition 

A w - 2  < 1. 
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Although equations (10) must be solved numerically at each temperature and for each 
pair of constants (A ,  B)  one can obtain an idea of the importance of the phonon terms 
by considering the zero temperature limit C -, CO. Upon setting A = 1, we see that 
(10) has a solution w = q = 1 as one would expect from the work of Wang and Hioe. 
But at T = 0, 

A’ A2(q2 + 3) 
Bw’ w6 

A = - - -  

which indicates that A < 0 if B > :. The solution therefore represents a saddle point 
off and may not be used to calculate the free energy from (7). A second solution with 
q # 1 which is a local minimum off can be found in such cases. For example, with 
A = 1, B = 8, the acceptable alternative solution is q = 4. 

Quite simple graphical considerations lead us to expect no more than two solutions 
of (10) with w > 1 for each set A,  B and C. No acceptable solutions exist for which 
0 < w < 1 since this would mean that q < 1. Also, there can be no stationary points 
with w < 0 when B < A’. To show this, assume that such roots do exist ; we deduce that 

tanh Cq = Aw-’[l + B - ‘ ( w ~ + I w I ~ ) ] ~ / ’  < 1 

and so, a fortiori, A’ < B giving a contradiction. We exclude the cases B > A’ since it 
appears that the model becomes unsatisfactory as B + A2.  

When A < 1 we shall see that for values of B which exceed a certain value B’, dependent 
on A ,  the super-radiant transition is first order, not second order. At this point it is 
convenient to describe how the case of many photon modes k and phonon modes f 
may be incorporated. It suffices to redefine the constants A and B as follows : 

and then the one-mode theory may be used. This follows because the many-mode 
partition function may be reduced to the single-mode case by (i) a change of scale; 
(ii) a rotation of the axes labelleil by the integrand variables, a device commonly used 
to simplify Gaussian integrals (see eg Thompson 1965, p 1438). Of course, it is no 
longer possible to give a simple meaning to the order parameter q in terms of the number 
of photons in each mode. 

3. Results 

Either (q - 1) which is proportional to the photon number, or (w - 1) which is proportional 
to the phonon number may be taken as an ‘order parameter’ in discussing the transi- 
tion. Choosing the first of these, solutions of equations (10) are plotted against tempera- 
ture in figure 1. The case A = $ is typical of results for the region 0 < A < 1. Roughly, 
at low enough temperatures an increase in the value of B produces a larger value of q 
at that temperature. This actually corresponds to increasing the photon number, n, 
given by 

n = $ ~ c ~ ( q ’  - 1)w-’. 
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Figure 1. Solutions for the variable 9 against temperature in the case A = f. 

When A < 1, all the solution curves like those in figure 1, pass through the point 
w = q = 1 at a temperature To given by 

-- E - tanh-' A 
2kT0 

and this is the critical temperature for values of B between 0 and B' given by 

B' = $[l+(A-A-')tanh-' A ] .  (12) 

When B = B', the curve has a vertical tangent at w = q = 1. The special value of B 
given by (12) may also be found by setting A in (1 1) equal to zero. For values of B > B' 
and at temperatures greater than To there appear to be two solutions. However, one 
is a saddle point off and the second, which is numerically larger, is a local minimum. 
This minimum gives a value off which is lower than the point of the boundary mentioned 
earlier, certainly for temperatures just above To, but as the temperature increases the 
local minimum off rises above the boundary minimum and eventually the saddle point 
and minimum merge. At temperatures higher than this, f has no stationary points. 

Contour maps off ,  drawn schematically in figure 2, show why the minimum off  
must be rejected in favour of the low point on the boundary for calculating the free 
energy. The sequence 2(a)-(f) describes the f surface at successively lower temperatures. 
In (6 )  the existence of an uncommon type of stationary point, ie a merging of a minimum 
and a saddle point, is shown by the cusp in a particular contour line. The minimum 
and the saddle point have separated in (c), but the lowest point remains on the boundary. 
At (d) we have the critical condition when the minimum and boundary low point give 
the same value off. These points must be found numerically and are indicated by the 
vertical dashed lines in figures 1 and 3. Further reduction in temperature is described 
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Figure 2. Schematic contour maps of the function f for decreasing temperature when 
B > I. 

by 2(e) (where T = To) and 2 ( f ) .  The free energy is calculated using the coordinates of 
the local minimum. Since the temperature dependence of the free energy changes at 
2(d) so that the first temperature derivative is discontinuous there, it follows that the 
transition is first order, being associated with a latent heat : 

As mentioned earlier, in the presence of the phonon interaction a super-radiant 
transition is possible even when A exceeds unity. An example is illustrated in figure 3 

1 '1 

I IC 

F i i  3. Solutions for the variable 1 against temperature. A = 1.01, B = A, 
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where A = 1.01, B = A. The transition is first order and in terms of the f surface, the 
situation described by figure 2(e) is not reached even at absolute zero. Finally, it must 
be said that as B approaches the value A’, the minimum point off recedes further from 
(1,l) and at zero temperature approaches infinity in the limit B = A’. Although one 
might expect a dissociation of the lattice under certain experimental conditions, it is 
felt that the present modified Dicke model is intrinsically unable to describe such an 
effect. 

4. Conclusion 

At zero temperature, the condition for a phase transition, ie A < 1, may also be derived 
for the multi-atom model (Swain 1972) by considering the dependence of the ground 
state energy on the ‘excitation number’ in the linear optics limit (Thompson 1972). 
The effect of the phonon terms upon this variational calculation of the ground state 
energy is now being studied. It emerges that in the case A = 1 the behaviour depends 
on whether B exceeds $ or not in accord with the finite temperature result of this article. 

The Dicke model is widely held to be of no practical importance. However, the 
modified form described here is theoretically interesting in that it provides a simple 
mathematical mechanism for a first-order phase transition which goes over smoothly 
to describe a second-order transition at appropriate values of the coupling parameters. 
As far as I know, this mathematical mechanism has not been described in the literature. 
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